Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Liping Lu, Hongmei Zhang, Sisi Feng and Miaoli Zhu*

Institute of Molecular Science, Chemical Biology and Molecular Engineering Laboratory of Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China

Correspondence e-mail: miaoli@sxu.edu.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{N}-\mathrm{C})=0.004 \AA$
R factor $=0.034$
$w R$ factor $=0.075$
Data-to-parameter ratio $=16.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

N, N-Dimethylbiguanidium bromide

The crystal structure of the title compound, $\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{5}^{+} \cdot \mathrm{Br}^{-}$, shows that the $\mathrm{C}-\mathrm{N}$ bonds in this compound range in length from 1.316 (4) to 1.354 (4) \AA. The dihedral angle between the two guanide planes is $68.5(1)^{\circ}$. The crystal packing is stabilized by $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds. The bromide anions are involved in six hydrogen bonds and are sandwiched between layers of N, N-dimethylbiguanidium cations.

Comment

An N-substituted derivative of biguanide, N, N-dimethylbiguanide, is a powerful oral antihyperglycaemic drug that has been used in many countries for over 40 years for treating diabetic patients with non-insulin-dependent diabetes mellitus. The crystal structures of N, N-dimethylbiguanide reacted with different acids, such as hydrochloric and nitric acid, have been studied (Hariharan et al., 1989; Zhu et al., 2003). We report here the crystal structure of N, N-dimethylbiguanidium bromide, (I).

(I)

The molecular conformation of (I) is illustrated in Fig. 1. The $\mathrm{C}-\mathrm{N}$ bonds range in length from 1.316 (4) to 1.354 (4) A, similar to those observed in related structures (Hariharan et al., 1989; Zhu et al., 2003), and indicating delocalization of electron density. The dihedral angle between the two guanide planes is $68.5(1)^{\circ}$, which is comparable with that in N, N-dimethylbiguanidium hydrochloride, but larger than that [51.7 (1) ${ }^{\circ}$] in N, N-dimethylbiguanidium nitrate. This difference results from the fact that, in N, N-dimethylbiguanidium nitrate, a pair of cations are linked to each other by hydrogen

Figure 1

The structure of the title compound, with displacement ellipsoids drawn at the 40% probability level.

Received 17 March 2004 Accepted 19 March 2004 Online 27 March 2004
bonds through atoms N 3 and N 5 ; however, N, N-dimethylbiguanidium hydrochloride and bromide do not involve such interactions and, therefore, have more freedom between the two guanide groups.

The hydrogen-bonding geometry in (I) is listed in Table 2 and illustrated in Fig. 2. The molecules in the crystal structure are stabilized by $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds. The bromide anions are involved in six hydrogen bonds and are sandwiched between layers of N, N-dimethylbiguanidium cations.

Experimental

All chemicals were of reagent grade and commercially available from the Beijing Chemical Reagents Company of China without further purification. N, N-Dimethylbiguanide was obtained from a 1:1 molar ratio of N, N-dimethylbiguanidium hydrochloride and NaOH in 2propanol. The suspension was stirred for 1 h at 313 K , filtered, and the filtrate evaporated to yield a white solid free of Cl^{-}(checked with $0.1 \mathrm{M} \mathrm{AgNO}_{3}$ solution). Compound (I) was prepared by dissolving N, N-dimethylbiguanide (10.0 mmol) in 5 ml water with the addition of hydrogen bromide to adjust the pH to 4 . The solution was left at room temperature and crystals of the compound appeared from the solution after several weeks, by slow evaporation of the solvent.

Crystal data

$\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{5}^{+} \cdot \mathrm{Br}^{-}$
$M_{r}=210.10$
Monoclinic, $P 2_{1} / c$
$a=8.2094$ (18) A
$b=14.203$ (3) \AA
$c=8.1261$ (18) \AA
$\beta=114.807(3)^{\circ}$
$V=860.1(3) \mathrm{A}^{3}$
$Z=4$
$D_{x}=1.623 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2039
\quad reflections
$\theta=2.7-26.8^{\circ}$
$\mu=4.72 \mathrm{~mm}^{-1}$
$T=298(2) \mathrm{K}$
Block, white
$0.70 \times 0.50 \times 0.50 \mathrm{~mm}$

Data collection

Bruker SMART 1K CCD areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 2000)
$T_{\text {min }}=0.064, T_{\max }=0.094$
4122 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.075$
$S=0.97$
1516 reflections
93 parameters

Figure 2
A packing diagram of the structure of the title compound. Hydrogen bonds are indicated by dashed lines.

Table 2
Hydrogen-bonding geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 5-\mathrm{H} 5 B \cdots \mathrm{Br}^{\mathrm{i}}$		0.86	2.55	$3.400(3)$
$\mathrm{N} 5-\mathrm{H} 5 A \cdots \mathrm{Br}^{\mathrm{iii}}$	0.86	2.77	$3.460(3)$	169
$\mathrm{~N} 4-\mathrm{H} 4 B \cdots \mathrm{Br}^{\mathrm{i}}$	0.86	3.14	$3.867(3)$	149
$\mathrm{~N} 4-\mathrm{H} 4 B \cdots \mathrm{Br}^{1}$	0.86	2.87	$3.469(3)$	128
$\mathrm{~N} 4-\mathrm{H} 4 A \cdots \mathrm{~N}^{\text {iii }}$	0.86	2.18	$3.017(4)$	165
$\mathrm{~N} 2-\mathrm{H} 2 E \cdots \mathrm{Br}^{\text {iv }}$	0.86	2.64	$3.422(3)$	152
$\mathrm{~N} 2-\mathrm{H} 2 D \cdots \mathrm{Br}^{\mathrm{v}}$	0.86	2.62	$3.422(3)$	155
Symmetry codes:	(i)	$2-x,-y, 1-z ;$	(ii)	$x, y, 1+z ;$
$x, \frac{1}{2}-y, \frac{1}{2}+z ;(\mathrm{v}) 1-x, \frac{1}{2}+y, \frac{1}{2}-z$.			$x, \frac{1}{2}-y, z-\frac{1}{2} ;$	(iv)

H atoms attached to C and N atoms were placed in geometrically idealized positions, with $\mathrm{Cs} p^{3}-\mathrm{H}=0.96 \AA$ and $\mathrm{N} s p^{2}-\mathrm{H}=0.86 \AA$, and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\text {eq }}(\mathrm{C})$ and $1.2 U_{\text {eq }}(\mathrm{N})$, respectively.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 1999); software used to prepare material for publication: SHELXTL/PC.

The work was supported financially by the Provincial Natural Science Foundation of Shanxi for Youth (No. 20011007 to LPL), and the Overseas Returned Scholar Foundation of Shanxi Province in 2002 for MLZ.

References

Bruker (2000). SMART (Version 5.0) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.
Hariharan, M., Rajan, S. S. \& Srinivasan, R. (1989). Acta Cryst. C45, 911-913. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1999). SHELXTL/PC. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.
Zhu, M.-L. Lu, L.-P. \& Yang, P. (2003). Acta Cryst. E59, o586-o588.

